
Three Stage Generalized Flowshop: Scheduling Civil

Engineering Projects

Moshe Dror and Paul A. Muilaserilt

Octokr 25, 1995

Abstract

We model the working of a civil engimctig firm concerned with land development as a dwee stage flexible

Rowshop wirh weak chain precedence consvainrr and where preemption is allowed. The whcduling objective is to

minimize tie mud tardiness for all the projects. Since solving ihis problem optimally is very had. WC propose 8

number of heuristic scheduling procedures which are evaluated extensively on real-life data and artificial problem

instances.

MIS Department. College of Business. The University of Arizona Tucson. Arizona 85721.

Jourmzl ojGIobol Oprim~;nriw 9: 321-3-U. 19%.
Q 1996 Kluu-er Academic Publishers. Primed in rhr .Vezherlmtds.

321

MOSHE DROR AND PAUL A. MULJ..ASERlL

1 Introduction

The problem of project design for land development and public works in a civil engineering consulting firm is

examined from the perspective of machine scheduling methodology. The engineering design operations. like jobs

in a manufacturing environment. must follow a prescribed sequence. Scheduling engineering jobs becomes very

similar 10 regular job scheduling if engineers are viewed as processing machines, and distinct stages of engineering

work are equated with manufacturing work centers. In this paper we describe the operation of an engineering

firm specializing in land development and public work design and cast 11 as a flexible Rowshop with three work

centers composed of uniform machines. To our knowledge. such a modeling approach has not been examined in the

literature in the past and in this paper we show how fitting this approach is for engineering consulting operations.

The engineering practices described below are taken from a local civil engineering firm. Reject data for six

months taken from that firm is used to examine and validate the analysis presented in this paper. The objective in

scheduling such projects is customer satisfaction expressed here as minimizing total tardiness. Though the problem

description is confined to the firm observed in this study, it represents a very common setting in land development

project planning and the analysis can be easily extended to any number of similar engineering consulting activities.

We start by describing in some detail the operation of the firm in this study, followed by a mapping of the firm’s

operations into a three stage flexible flowshop scheduling terminology.

A civil engineering firm specializing in land development and public works receives requests (customer orders)

to design land development projects. The project requests are received dynamically in time and the engineering

firm commits itself to a delivery date(s) for each project. A common land development project consists of four

main design stages: (i) an initial field study involving a field crew for on site project assessment and measurements.

(ii) development of the project design by a design engineer. (iii) transfer of the design specifications into drafting

format by a drafting engineer. and (iv) another field study conducted once again by the field crew to lay out dmft

construction parameters. There are two phases 10 a contract. A contractual agreement between the customer and the

engineering lirm speciiies the due date for the first phase. after which the customer examines the drafting layout of

the project in question and comments on the design. After that. a second due date is set for the project wherein the

company completes the tield study 10 layout construction parameters and delivers the final product lo the customer.

In many cases. both due dates are set a1 the initial project acceptance but the second due date might be reset

when customer examines and comments on the project design. The initial release date for each project is obtained

dynamically in time as the projects are recewed by the firm. Similarly the release date for the final field study for

THREE STAGE GENERAL IZED FLOWSHOP 323

Figure 1: A systems view of the operations

each project is obtained atier the drafting format is reviewed by the customer. For most of the projects. the initial

field sNdy (stage (i)), and the final field srudy (stage (iv)) are conducted by a team from the field crew.

We view the process of designing civil engineering projects as a three stage flexible flowshop with uniform

machines at each stage. We start by breaking up each project into two separate projecu (two jobs) with precedence

relationship. Thus, we establish a chain precedence relationship of length at most two for the modified set of

projects, derived from a given set of projects. Stages (i) - (iii) are viewed as one project with its due date. and stage

(iv) is viewed as a separate project with its own due date. The final field study (the original stage (iv) activity) is

represented as a new project which requires processing only in stage (i) and has zero processing times in stages

(ii) and (iii) of the generalized flowshop. Note that the projects/jobs can be broken up in this way because this

Generalized Flowshop is Null-continuous (Hefetz and Adiri. 1982). and since in reality there are two separate due

dates for each project - one for the completion at stage (iii) and one for the final project completion (stage(iv)). A

systems view of the operations is given in fig. I.

We now cast the problem in machine scheduling terminology. We will use the term projects and jobs intcr-

changeably in this paper.

324

2 Problem Formulation

MOSHE DROR AND PAUL A. MULLASERIL

Following the notation in Sriskandarajah and Sethi (1989). a flexible flowshop consis& of a set of k > 2 machine

centers [Z, . a-,. . ..Z& with center Z, having mi 2 I parallel machines. There are n projects - (parts) {f’j[l 5

j 5 n} to be processed in the Rowshop. The VeCtOr r(Pj) = [pjl,p,2,. . ,pjh] denotes the processing times of the

VENOUS tab required by P, in centers [Z, , Z-, . . . 2,). ~~pectively. Task pji may be processed on any of the m

machines in machine center Z,. In the literature (Sriskandarajah and Serhi. 1989. Wittrock, 1988, Blazewicz et al.

1991. Blazewicz, et al. 1994. and Kouveiis and Vairaktamkis. 1994) the common assumption is that the machine

centers are composed of identical parallel machines.

In the case of the civil engineering firm in this study, the machine centers are composed of uniform machines.

More specifically. in stage (i) there are four crews of field engineers available, each crew can be viewed as a machine

and the four crews are considered identical. In stage (ii), one personal cornpurer is available to 5 engineers to assist

in the development of a plan for a project. Only one out of the five planning engineers can use the computer at any

given time. The computer assisted planning is about 25% faster than project planning without the computer. Thus.

stage (ii) is viewed as having 5 machines; four identical machines and one machine 25% faster. Stage (iii) has 3

computers available to five drafting engineers. Hence. stage (iii) consists of three high speed identical machines

and two low speed machines (manual drafting). Consistent with the usual scheduling assumptions. no engineer

may work on more than one project at a time, and no project can be assigned to more than one engineer at a time.

Also. if a task is assigned to a fast machine in any srage. in case of preemption it has to complete its processing

on a fast machine. The same holds for the tasks processed in some stage on a slow machine. We cannot switch

the processing of a task at any stage f?om a fast machine to a slow machine and vice versa. We use time units

corresponding to half days (reflecting the practice of the civil engmcering company in this study) and we allow for

preemption which respects machine type. A diagram for the civil engineering project planning operations is given

in Figure 2.

Following the notational classification of scheduling problems (see for instance Blazewicz. et al. 1993), the

problem described above is represented by F31rnt = F’4.m~ = Q5, m, = Q5. rJ,pmtn, weal: &.&I 5 21 cj Tj,

where J-3 represents the flowshop environment wth 3 machine cenrers. ml = P4 represents that the first machine

center has four identical parallel machines. m- = Q5 represew that the second machine center has five parallel

uniform machines. and m, = QS represents that the third machine center has five pwallel uniform machines. We

allow for task preemption (the tasks’ processing time 1s measured in half day units). The precedence relationship

THREE STAGE G ENEXALIZED FLOWSHOP 325

i

Figure 2: Layout of the facilities

between tasks is that of weak chin (see Dell’Olmo et al. 1993) and each chatn has at most two tasks. In dre third

field 7 = cj Tj, which represents that the objective in thts problem is that of minimizing the total tardiness. In

terms of complexity results. the classical F211 cj Cj problem is NF’-hard in the strong sense (Garey. et al. 1976).

Thus. F21/ C, Tj is NP-hard in the strong sense as well. ?he flexible tlowshop represents a generalization of the

traditional one. thus. its complexity classification is no easier than that in the corresponding traditional flowshop

cases. In terms of heuristic algorithms. Blazewicz. et al. (1994). present a simple (Johnson like) algorithm which

has a worst case behavior of 2 for a two stage flexible tlowshop fZ/n, > 2. mz = I/cmoi and in Kouvelis and

Vairaktarakis (1994) an improved worst case bound of 2 - l/(vmz{ m,,m~}) is presented for the more general

case. Sriskandarajah and S&i (1989). present a several similar algorithms with bounded worst case behavior for

different variants of two stage flexible Rowshop problems where the objective is to minimize makespan

For the three stage flexible Rowshop with tardiness related objective. to our knowledge. no bounded worst

case behavior algorithms have been described in the literature. Wittrock (1988). describes a decomposition based

heuristic which was tested for sequencing printed circuit board cards on insertion machines grouped into families

of one. two. and three machines respectively in a three stage flexible flowshop setting. Wittrock’s objective was

to minimize the makespan and thereby reduce the auxiliKy storage requirements in the system. He reports good

results for his algorithm as compared to a lower bound on the schedule length when using real life industrial data

for a weekly production. In this paper, we present an algorithmic approach which constructs schedules for a set

of projects which the engineering firm received over a course of six months. The projects’ data presented here

326 MOSHE DROR AND PAUL A. MULLASERIL

is real-life data and the tardiness for the projects is computed in half day unxs which closely approximates the

operational units in our company.

3 Description of the Proposed Scheduling Procedures

In dtis section we introduce three procedures for scheduling tasks in our three stage flexible Rowshop, The Forward

Heuristic. The Backward Heuristic and The Earliest Due-date Heuristic. We also discuss a post optimization swap

heuristic called the Interchange improvement procedure. An example problem to illustrate the mechanics of each

of these heuristics is also presented.

Currently, the firm’s practice is to schedule projects for the entire week each Monday morning. Since preempuon

of tasks is allowed, a task whose processing was started in the previous week (at any one of the three processmg

stages) but has not yet been completed is regarded as a new task and where its processing time is appropriately

adjusted. The only continuity requirement is that the same machine type (slower or faster) is necessary for rhe

completion of a started task. so that tasks staned on a computer will remain on it while manual tasks are done

manually later. The projects are scheduled according to an intuitive perception of job priority relative to potential

tardiness. In most cases this strategy results in a near-term Earliest Due Date (EDD) heuristic. It should be noted

that, because of a problem in accurately estimating project’s requirements or the firm’s capacity, for some projects

a due date specified at the initlal project acceptance time may introduce unavoidable tardiness (i.e.. the minimum

processing time required for a project already results in some tardiness for that project given the due date).

Project data for a six month of firm’s operation was made available to us. and hence it was easy to calculate

the total tardiness as experienced by the lirm during that p&cd. In real life the projects are scheduled on line each

Monday morning from a pool of projecrs available at that time. Since our project information for the testing period

was in some sense more complete, we opted to assume that rhe EDD heuristic would be the appropriate candidate

to represent the firm’s present performance and serve as a bench mark for comparison instead of just reporting

the current operational tardiness. We will first describe the EDD heuristic as applied to this civil engineering

project planning and disregard for the time being the UT& chain precedence relations. This precedence relation

is imposed directly in the heuristic procedure.

THREE STAGE GE, VERALUED FLOWSHOP

3.1 Earliest Due Date (EDD) Heuristic

327

The enrlicsr due date (EDD) algorithm (known a~ Jackson's rule. Jackson. 19%). simply schedules the projects

in order of non-decreasing due dates. For this F31nl = P4. q = Qs. m, = Qs. rJ.pmtnl Cj T, problem, this

EDD heuristic is extended in an attempt to reduce the mean flow time for the projects, always favoring the faster

machines in each stage whenever there is an assignment option. We completely schedule the tasks of a project in

increasing order of the stages, before scheduling tasks from the next project. As soon as the a phase I project is

completely scheduled, the corresponding phase 2 project is added to the list of tasks to be scheduled. A description

of the modified EDD heuristic for the three stage Generalized Flow Shop is siven below.

Step 1 Construct a list L of projects sorted according to non-decreasing due dates dj.

Step 2 Remove the project at the head of the list.

Step 3 Starting with stage i := I. we schedule each task of the project on the fastest available machine. so that we

do not violate consuaints imposed by the release date P, or by the processing times of a task in an earlier

stage

Step 4 As soon as we completely schedule all the stages of a phase I project. the phase 2 project in the chain

precedence constraint is added to the list and tbe list re-sorted.

Step 5 We repeat step 2.3 and 4 until the list L is empty

3.2 Forward Scheduling Heuristic

Emmons (1969) showed that in a one machine environment. the shortest processmg time (SW is optimal if it yields

a sequence where all the tasks are tardy. He also showed that the earliest due date heuristic (EDD) sequence is

optimal if it yields a sequence where at most one job is tardy. We note that the cngmeenng firm in this study practices

accepting as many projects as possible even if it initially results in tardiness for some or all the projects. Thus, it

is impatant for our heuristics to schedule a family of projects even when none of tbe projects can be completed

on time. Following Emmons single machine SPT-EDD observations, our first heuristic can be characterized a~ a

combination of SPT and EDD approach. We favor the faster machine in each stage whenever there is an assignment

option. However, since preemption of tasks is allowed, in the Forward and Backward heuristics we reschedule dte

available tasks each time a new release date is reached. In other words. we apply the two heuristics to the subset

of tasks available between any two consecutive release dates. We break ties using the SPT rule.

328 MXI+E DROR AND PAUL A. .M”LLASERU

Let s be the number of stages (in this case 3) and m, be the number of available machines in stage i where

i E (1,...,5). Let R he the list of release dates sorted in non-decreasing order. Identified with each project

J, are: a release date rj, a due date d,, a vector of tasks [J,,,....J,,.....J,s], a vector of processing times

(Pj,. Pj~, P,s], and a WCCO~ of available times (defined later) [t>l. t,<. ._.. t,s]. The available times are

determined dynamically while assigning tasks. Associated with each project Jj is a project Jj reflecting the second

phase of the original project. JJ’s release date is determined by the completion date of project Jj, even though its

due date d> is usually known in advance. Note dtat JJ has processing time zero in all stages except the first stage.

A set of available tasks in any time interval [ti. tt] consists of those tasks of a project whose associated tasks in an

earlier stage and phase (if applicable) have been completely assigned. Thus the set of available tasks can he started

in dte time Interval [t,, t,] without conflicting with the processing of its predecessors. The set of predecessor tasks

for a task JJ, includes all tasks hat in previous stages of the project j and portions of the task already scheduled

in the same stage. The heuristic is as follows:

Step 1 Consider the release date at the head of the list R. say r. Preempt already scheduled tasks in all machines

(in all stages as well) at this release date f. Preemption of a task in phase I project will result in the removal

of all scheduled tasks of the project in subsequent stages and the entire removal of the corresponding phase

2 protect (if scheduled).

Step 2 Start with stage i := I. Construct a list L of available tasks Jji in the interval (r.r+ I). where P + 1 is

the next distinct release date in the list R after release date r. Set the available time for the Brst task in the

three stages of a project J, in the list as t,, = r, the avvlable times of tasks in subsequent stages will be

determined by the completion time of tts predecessor tasks. This also applies to projects that are the phase 2

project in dre weak chain precedence relatmnship. To this list add the set of unassigned pre-preempted tasks

in stage i from step 1. The available times for the tin: of these tasks in a project are set as r. The available

times for tasks in stage i that are not yet completely scheduled are determmed from the completion times of

its predecessors. Sort the list L according to nondecreasing available times t,,.

Step 3 Schedule each successive task from this list. preemptively so as to minimize its completion time. Apply

the shonesrpmcessing rime (Sm) rule for tasks with the same due date. always favoring the faster machines

in each stage whenever there is an assignment option. If any task Jji is completely scheduled. update the

available time of the task in the next stage of that project according to t,i + Pj; 5 tji+l such that it does

not conflict with its predecessors. Update the available times of tasks in stage i whose predecessors have

changed.

THREE STAGE GENERALIZED FLOWSHOP

Project R&are Phase I Phase II

Date I II III Due dare i Due Dare

Job 1 0 30 30 20 60 6 70

Job 2 0 20 20 10 60 10 70

Job3 10 16 20 20 60 IO 100

Job 4 20 10 10 30 70 10 90

Table 1: Processing times in the example problem

329

Step 4 Repeat step 2 and 3 with i := i + I until the last stage. If at stage 3 a prqect JI is completely schcdulcd.

then insert the next phase .I; of that project into list L.

Step 5 Repeat steps 2.3 and 4 until the list L is empty

Step 6 Repeat steps 1. 2 ,3 .4 and 5. until the list R is empty

If there are R tasks. the time complexity of this algorithm IS O(n’ log n). We illustrate this procedure in the example

below.

Example 1: Consider the set of projects in Table I to be scheduled on a flow shop with three swges and two

machines in each of the stages. The second machines is twice as fast as the other machme in each stage. The

numbers in the columns marked I. II, III are the processmg times for the tasks in each of those stages. In first

iteration. we schedule projects with release time in the interval [O. IO). which are projects 1 and 2. In stage I. since

the available times for both projects are the same. we use the SF’T rule to break ties. Project 2 has tasks with the

shonest processing time. hence. we schedule it tint. on machine 2 (the faster one). Project 1 is also scheduled on

this machine. In stage 2 once again project 2 has the earliest available tune and is scheduled iirst on machine 2.

thereafter project 1 on machine 2. At the end of stage 3. on completion of phase I of projects I and 2, we add the

phase 2 projects to the list. labeled as tasks 1001 and 1002. Since the processing time of task 1001 is shorter than

the processing time of task lCO2. it is assigned Brst to machine 2. which is idle. At the end of this iteration we

have the assignment as shown in figure 3a.

In the second iteration we consider tasks in the interval (10.20). which consists of only task 3. Since the release

date of this job is IO all tasks of machine 2 in stage I after this date are preempted. Similarly all tasks in stages 2.

3 and Phase 2 tasks in stage 1. namely tasks 1001 and 1002 are preempted. When assigning tasks in each stage.

MOSHE DROR ANi PAUL A. MULLASEZUI

sun L

m/c 2 J2 J3 J4 / JI

cl 10 20 30 40 50 ho 70 PAJ 90

Fig 3. Example showing the job assignment &ing the loward scheduling heuristic.

Fig 4. Erample showing the assignment job wignmcnu using rhc bsckrwd scheduling heuristic.

THREE STAGE GENERALIZED FLOWSHOP

Forward Scheduling Heuristic

+** No Assignments are made on thrs machine *..

Piald-Ctsr 2
Job Start Finish Phase 2 Tardiness

2 0.00 10.00 N 0.00
1 10.00 25.00 N 0.00

1002 25.00 30.00 Y 0.00
1001 50.00 53.00 Y 0.00

Project-Plmnuing 1
'*- NO Assignments are made on this machine ..

Project-Planning 2
Job Start Finish Tardiness
2 10.00 20.00 0.00
1 25.00 40.00 0.00

Drafting-Enginemr 1
.+* NO Assignments are made on thls machine --.

Dralting-Bngin.or 1
Job Start Finish Tardiness

2 20.00 25.00 0.00
1 40.00 50.00 0.00

Job Start Finish Phase 2 Tardiness
1002 25.00 30.00 Y 0.00
1002 30.00 33.00 Y 0.00

Piald-Crsr 2
Job Start F l n ~ s h Phase 2 Tardiness
2 0.00 10.00 N 0.00
3 10.00 18.00 N 0.00
1 18.00 33.00 N 0.00

1002 33.00 34.00 Y 0.00
1003 40.00 45.00 Y 0.00
1001 58.00 61.00 Y 0.00

Project-Plmning 1 ... No Xsszgnments are made on this machine '--
Project-Planning 2

Job Start Finish Tardiness
2 10.00 20.00 0.00
3 20.00 30.00 0.00
1 33.00 48.00 0.00

Drafting-Enginear 1
.** No Assignments are made on c h ~ s machine **'

Drafting-Enginoar 2
Job Start Finish Tardiness
2 20.00 25.00 0.00
3 30.00 10.00 0.00
1 48.00 58.00 0.00

MOSHEDRORANDPAULA.MULLASERlI

Backward Scheduling Heuristic

Job
1

1002
1002

Job
2

1001

Job
2
1

Job
2

Job
2
1

Job
1

start Finish Phase 2 Tardiness
20.00 10.00 N 0.00
60.00 67.00 Y 0.00
67.00 70.00 Y 0.00

Field-Crew 2
start Finish Phase 2 Tardiness
30.00 40.00 N 0.00
67.00 70.00 Y 0.00

Project-Plaluling 1
start Finish Tardiness

0.00 20.00 0.00
20.00 50.00 0.00

Project-Planning 2
start Finish Tardiness
50.00 50.00 0.00

Drafting-Engineer 1
start Finish Tardiness
50.00 60.00 0.00
60.00 60.00 0.00

Drafting-Engineer 2
start Finish Tardiness
50.00 60.00 0.00

Job
I

1002
1002

Job
2

1001

Job
2

start

0.00

50.00
57.00

Start

0.00

80.00

start

10.00

40.00

Field-Crew 1
Finish Phase 2 Tardiness

30.00 N 0.00
57.00 Y 0.00
60.00 Y 0.00

Field-Crew 2
Finish lhase 2 Tardiness

10.00 i-4 0.00
83.00 Y 0.00

Project-Pluming 1

Finish Tard;r.ess
30.00 0.00
70.00 0.00

Project-Planning 2

l ** NO Assignments are made on rh1.s machine +**
Drafting-Engineer 1

Job start Finish Tardiness
2 40.00 50.00 0.00

Drafting-Engineer 2

Job start Finish Tardiness
1 70.00 80.00 0.00

THREE STAGE GENFXAL IZED FLOWSHOP 333

the preempted tasks are added to the appropriate lists. In cake of stage 1 phase I tasks, the available time is 10. In

case of other stages and for phase 2 the available times are computed dynamically. The assignment at the end of

tbis iteration is shown in figure 3b.

A gnnrr chin showing the final schedule for the example in Table 1. is presented inJigure 3. Tasks that pertain

to phase II of a project Jj, i.e. tbe second project in the chain precedence coastraittt is denoted as J;.

3.3 The Backward Scheduling Heuristic

The backward scheduling (BS) heuristic is an alternative method for scheduling the projects in this civil engtneering

context. The BS procedure for scheduling tbe projects starts by assigning the project whose due date is the latest

and then sequentially assigns the tasks with earlier due dates. Its emphasis is on flow time at each stage by assigning

the longer tasks to the slower machines. The time adjustments are initially made by updating the starting times for

each project at each stage so that it can start as soon as possible.

For any given pool of projects. schedule the project with the latest due date (break ties according to largest

processing time in the last stage) so that it will be completed at or before its due date. After scheduling all the

projects. adjust the times by moving the starting times to the left whenever it is possible as long as they are

non-negative. In case of a negative staning time, move the project to the right by the least amount so the starting

time is at least the release date. Adjust all the projects whose schedule is affected by moving their processing to

the right by the same amount. Whenever a choice is possible. assign the longer task on the slower machine when

assigning from right to left in time (and stages). In this case note that when we schedule preemptively. it is done so

backwards. This means that while scheduling msk backwards we may remove porttons of already scheduled tasks

prior to the due date of ihe job being scheduled upto the release date of the project.

Once again. let 5’ be tbe number of stages and nt, be the number of available machines in stage i where

i E (I. 9, Let R be the list of release dates sorted in non decreasing order. We DOW define a related quantity.

forger completion time tji of any task i as the latest date that the task must be completed in stage i for the

project Jj to be on time. AS discussed before. identified with each project .I, are: release date i-j, doe date dj, a

vector of tasks [.I,, , Jli, J,s], a vector of processing times [Pj,, 98, Pjs]. and target completion times

[t,,, tjs. tjs]. Associated with each project JI is a project Jj reflecting the second phase of the project. whose

release date is the same as that of Jj but whose available time for the first stage is determined by the completion

date of project J, and whose processing times are zero in all stages except the first stage. A set of available tasks

334 MOSHE DROR AND PAUL A. MULLASERIL

in any time interval [ii, tj] consists of those tasks of a project whose associated tasks in an later stages and phase

1 (if applicable) have been completely assigned. The set of succesors of a task is the tasks in subsequent stages of

the project and portions of the task already scheduled. The algorithm is as follows:

Step 1 Stan with the release date at the head of the list R. say r. Preempt all tasks in all machines in all stages

at this release date r. Set the available time of rhe pre-empted tasks (if there are any) as r. Preemption of

a task in phase 1 project will result in the removal of all scheduled tasks of the project in subsequent stages

and the removal of the corresponding phase I project if a phase 2 task is preempted.

Step 2 Starting with the last stage i := S. Consouct a list L of available tasks Jjc m the interval (r, r + 1). To this

list add the set of unassigned pre-empred tasks in stage i from step 1. Set the completion time for the last

stage of project 51 as tji = dj for all tasks in the list L. Sort the list L according to non increasing target

completion times tji.

Step 3 Remove the first available tak in stage i from the list L and schedule the task with the latest time tjz

preemptively (break ties according to longrsrpmcessing rime in the last stage) so that it will be completed at

or before its due target completion time tjz, favoring rhe slowest machine whenever there is an assignment

option. If a task does not fit (too long), we need to move tasks to the right on one of the machines in order

to schedule this task. Determine the machine where the smallest such movement can be made and move all

tasks on that machine to fit the task in question. Determine all other tasks affected by such movement of

tasks and move them also. so that the schedule made thus far remains feasible.

Step 4 If any task JJ, is completely scheduled. update completion time of the task in the previous stage of that

project according to t,;-, < t,, -P,; such that it does not conflict with its wccessor tasks. Update the target

completion times of any task in stage i whose set of successors tasks has changed. If at stage 1. inuoduce

into the list L any task that becomes available a a result of completely scheduling the phase 2 project in B

weak chain precedence.

Step 5 Repeat step 2.3 and 4 with i := i - 1 until i = 1

Step 6 Repeat steps 2. 3, 4 and 5, until the list L is empty.

Step 7 After scheduling all the projects in the mterval (r. r + 1). adjust the times by moving the starting times to

the left whenever it is possible il(, long as they we non-negative and the schedule remains feasible. In case

of a negative stardng time. move the project to the right by the least amount so the starting times become

THREE STAGE GENERAL KED ROWSHOP 335

non-negative. Adjust ail the projects whose schedule is affected by moving their processing to the tight by

the same amount.

Step 8 Repeat step 1 to 7 until R is empty.

The time complexity of this algorithm is O(n* log n) as well.

Example 2: We illustrate the BS heuristic using the same example as before. Start with the interval [0, IO).

with tasks 1 and 2. Assign first the Phase 2 tasks, in this case phase 2 task 2 (label 1002) on machine 1 starting

at time 60 and ending at time 70. Phase 2 task I (label 1001) is assign& on machine 2 from 67 to 70. Tasks are

then assigned on stage 3.2. and I. We note that task I on machine I stage 1 is assigned from -20 to 10. Hence we

need to move the tasks to the right. Tbe assignments at the end of step 3 are shown in figure 4a. Next we move

the tasks as far left as possible in step 7. The assignment after this phase is shown in figure 4b. The procedure

is repeated for intervals [IO. 20) and [20,. .I. We preempt all tasks at time 10 and 20. The final assignments are

displayed in the gunn chart in figure 4.

3.4 Interchange Improvement Procedure

We now present a project interchange heunstic which receives as its input a schedule between two consecutive

release dates. The objective of the heuristic is to effect the maximum reduction of the total tardiness by a series of

pairwise swaps of the constituent tasks (belonging to the same stage) of pairs of projects. Suppose. we define for

all tasks i in any project j, a quamtty

T,i = max(O.(dJ - Cl,))

C,i being the completion time of task i in project j. then

where i E (1,s). So, using T’i as a measure to select candidate pairs will always result in one selecting the

tasks in the last stage, whereas the project may be delayed due to a delay in any of the tasks in other stages. Hence

we introduce the notion of d&y. The delay of a task is defined as the maximum of the difference between the

target completion date and the actual completion date, and zero. where the target completion date t,i of any task

J,i in stage i of project Jj is calculated as

336 MOSHE DROR AND PAUL A. MULLASFRIL

where i, Iz E (I. .., 9. Thus. delay Dji for a task belonging to project j in stage i is given by:

4, = max(o,(t,i - C,iN

For any stage i. evaluate interchanging a task with the highest delay with all other tasks in the same stage. The

pair of tasks that decrease the total tardiness the most is selected for a pairwise interchange. We continue until we

can no longer decrease total tardiness by pair-wise interchange of tasks. The heuristic is formally stated below.

Step 1 Starting with stage i = I, construct a list L of all tasks in stage i. Evaluate the delay of each task in the list

L. Sort the list according to non-increasing delay.

Step 2 Remove the first task on the list L and evaluate interchanging this task with other tasks in the list by

calculating the potential decrease (savings) in the total tardiness. Select the pax that effects the highest

positive savings and implement the interchange. When making a painvise interchange of tasks with unequal

processing times, move tasks if necessary to the right to accommodate a larger task and move tasks to the left

to ii l l a void left by a larger task. We use the same routines for moving left and right as done in the backward

scheduling heuristic. In the case of moving tasks to the right we may need to move tasks in subsequent stages

so that is no conflict in the processing of tasks.

Step 3 Repeat steps I and 2 for all other stages.

Step 4 Repeat steps 1 to 3 until no more improvement in total tardiness can be made.

If there are n tasks, the time complexity of the interchange procedure is O(G).

4 Computation Results

For the six month project data obtained for the engineering firm, we have the release times. completion times. and

the processing requirements for each project. We rerun the two heuristics CF’S. BS) each Monday updating the

corresponding pool of projects by adding all the new projects released since last Monday (i.e. on line scheduling).

The EDD heuristic was used for benchmarking the performance of our heuristics. The results are tabulated in

7obIe.2. We refer to the Forward Scheduling. Backward Scheduling and the Earliest Due Date heuristics as A1g.I.

Afg.2 and Alg.3 respectively.

I-HREE STAGE GENERALIZED FLOWSHOP

Wirk Impmvemenr

Alg.1 Alg.2

T
Al&l

568.32

9.02

63.01

337

Alg.2 Alg.3

-t
2466.21 5850.50

Table 2: Computation results for six month scheduling horizon

In an effort to study the performance of these algorithms under varied circumstances. we generated problems

of size IO to 60 tasks in increments of IO. based on the data given to us, generating 20 problems in each size.

The tasks were generated using a uniform distribution, since it was found to best fit the processing times of typical

tasks encountered by the firm. The inter arrival time between tasks arriving to the system was modeled using an

exponential distribution. We use Unifit II. a software package developed by Averill Law and Associates. Tucson and

the methodology prescribed by Law and Kelton (1991) to determine the suitability of the probability distributions.

The upper and lower bounds of the distribution were determined from the data given. It was observed that tasks

amved to the system at the frequency of 3 to 4 tasks every ten days. We used a direct proportion of this artival

rare (called congesrion /actor) to determine the arrival rate for the different data sets. This is done. so that the

scheduling horizons for each data set is reduced appropriately. so that the tardiness results are comparable. The

results of these computations are tabulated in fable 3. while ruble 30-c give a comparison of the results for different

values of the congestion factor.

We observe that the Forward heuristic (Alg.1) tends to dominate the others by generating a solution where

all machines were kept occupied as much as possible (Table 2). However this strategy tended to produce many

preemptions which may be detrimental to other objectives of the firm. The backward scheduling heuristic (Alg.2)

allocates larger tasks to the slower machines whenever there is an assignment option. This produced fewer preemp-

tlons at the cost of increased total tardiness. The number of preemptions produced by both these heuristics for 20

sample problems in each category of size is compared in table 2a.

It is also observed (Table 3) that the pan-wise interchange heuristic does not improve the initial tardiness results.

by a significant amount unless the congestion to the system is high. In table 3. on actual data from the firm tbe

congestion is high because the firm accepts as many protects as possible (high congestion) even if it results in

tardiness for some or all of the projects. If the congestion is low the interchange procedure does not significantly

338 .MOSHE DROR AND PAUL A. WJLLASF.RIl

Backward Heurisric

1 673 1 1356 j 225 / 329 1

Table 2a Comparison of the number of preemptions

0.
67

26

.6
1

8.
89

4.

45

22
.2

0
32

.4
8

4.
14

14

.9
2

42
.1

6
5.

4
I

14
.4

3
57

.7
0

2.
14

IO

 6
8

56
.9

8
1.

8s

9.
12

6’

).1
1

Su
e

60

w
ilh

lm

pr
ov

em
cn

l
he

ur
is

tic

si
ze

IU

0.

67

25
.1

7
si

ze

2u

4.
45

21

.2
1

.s
iz

L!
 3

0
4.

74

lb

55

Si
ze

 .
fu

5.

41

14
.2

0
Sm

!
50

2.

14

Il.
28

Si

ze
 6

0
1.

84

%
34

8.
80

32

.1
6

42
.2

9
56

.2
1

55
.9

5
67

.7
1

0.
37

45

.4
8

6.
92

3.

92

13
1.

36

34
.5

6
3.

84

39
.9

3
30

.3
6

19
.9

8
10

6.
97

93

.6
4

5.
32

31

.6
4

12
0.

65

24
.0

4
12

0.
65

12

0.
65

6.

76

30
.9

5
52

.9
7

29
.8

9
97

.7
8

14
3.

54

2.
13

2

I .
40

53

.5
2

18
.2

5
82

.7
3

IJ
?.

?I

I s
7

22
.5

6
65

.2
0

21
.9

4
10

0.
2

I
18

0.
29

0.
37

45

.2
7

6.
85

3.

92

14
8.

14

34
.5

6
3.

84

36
.0

5
30

.0
4

IO
.9

8
92

.1
8

93
.0

4

5.
32

47

.7
6

39
.4

4
24

 0
4

15
5.

88

11
9.

73

6.
76

28

.8
9

51
.5

0
29

.8
0

92
.2

6
14

1.
21

2.

13

22
.1

8
52

.5
5

18
.2

5
10

5.
43

14

0.
96

I.5

5
2

I .
O

O

63
.8

1
21

.5
9

87
.9

9
17

8.
69

340 MOSHE DROR AND PAUL A. MULLASERIL

Table 3a. The performance of the forward heuristic at various valun of the congestion ractor.

Inpw Dam tong = 0.2s Gong = 0.50 Gong = I.00 tong = I.25 cottg= 1.50
Phase I Phase 2 Phase I Phase 2 Phase I Phase2 Phase1 Phase 2 Phase 1 Phase-2

size IO 2.96 1.93 1 .JS 1.03 0.67 0.37 0.49 0.30 0.44 0.30
Size 10 26.22 25.55 14.92 14.24 4.45 5.84 2.68 2.15 I .76 I.38
Sire 30 5 I .90 57.25 27.67 34.88 6.30 7.1 I 3.23 5.42 1.19 I.25
Six 40 66.9 I 84.9s 35.65 48.5 I 5.10 5.59 2.03 2.00 0.88 0.8 I
Sire SO 85.15 III.82 38.53 52.61 2.14 2.13 I .09 1.01 0.46 0.35
size 60 101.93 140.49 47.02 70.52 2.09 1.98 0.98 0.88 0.43 0.22

Table 3b. The performance of the backward heuristic at various values of the congestion factor.

npur Dam 1 COtlg= 0.25 / COng= 0.50 1 COng = I.00 1 Gong = I.25 1 Gong = l.jO

Phase I Phase 2 Phase I Phase 2 Phase I Phase2 Phase I Phase 2 Phase I Phase 2

See IO 1 SO.80 61.27 1 41.24 66.06 I 26.61 45.48 1 20.90 3S.Sb 1 18.S9 40.28
Sire 20 68.3 I 89.83 53.15 86.17 22.20 39.93 15.82 31.85 14.13 27.58
See 30 102.80 IJO.iS 51.74 74.10 17.47 34.91 IS.02 32.99 11.31 2O.Sb

Size 40 113.1 I 169.49 48.22 78.77 14.17 30.46 I I.56 23.99 8.74 17.64
Six 50 107.50 lSl.2S 43.56 8734 10.68 21.40 8.95 lb.84 7 69 12.80
Six 60 126.55 185.42 59.3 I 117.71 IO.38 22.82 9.17 17.19 7.13 I I.46

Table 3~. The performance of the EDD heuristic at variour values of the congestion factor.

mpur Data Cong = 0.25) Gong = 0.50 1 tong = 1.00 1 tong= 1.25 1 Cong = 1.50
Phase I Phase2 Phase I Phase 2 Phase I Phase2 Phase I Phaw2 Phase I Phnse 2

18.98 (16.53 13.45 1 8.89 6.92 1 8.05 6.24) 7.04 3.57
See ‘0 73.17 68.23 57.00 S3.36 j2.48 30.36 28.25 25.99 17.96 lb.5
Size 30 121.8-l 116.02 90.63 86.35 44.37 41.10 33.42 30.67 2 1.89 19.5 I
Six -10 171.16 164.63 123.53 118.22 56.03 51.91 40.99 57.49 25.99 23.38
See SO 213.63 207.89 149.13 144.3 I 56.98 53.52 38.1-l 3S.36 17.93 16.00
SIX 60 258.34 253.97 lSS.61 178.98 71.53 66.62 46.53 42.66 20.1 I 17.68

THREE STAGE GENERALIZED FLOWSHOP

342 MOSHE DROR AND PAUL A. MULLASERL

decrease total tardiness. In some cases the pairwise swaps actually produced worse results because they were

applied only to the schedule generated between two adjacent release dates and ihereafter the schedules were not

undone.

5. Summary

In this paper we study a common crew scheduling problem tn a cwl engineering firm concerned with land

design and development. The problem is modeled as a three stage generalized flowshop problem with weak chain

precedence constraints and where preemption of the tasks are possible in each of the stages. The modeling aspects

are interesting because :- (a) it represents a very common settmg m land development project plannmg and the

analysis can be extended to any number of similar engineering consultmg activities. (b) we establish a weak chain

precedence relationship of length at most two. to model the fact that each contract actually consists of two separate

phases. each with its own due date. (c) we extend the frame of generalized flowshop to cover uniform machines

in each stage. (d) to our knowledge there is only one other paper on three stage flex~hle flowshop scheduling

(UQtrock. 1988). In that paper. the issue of precedence constraints and preemption are not considered.

We examine alternative scheduling approaches for mimmizing tardiness in the context of the generalized flow-

shop. In view of the problem complexity we consider only heuristic solution methods. The impact of past-heuristic

opttmizntion techniques such as pairwise swaps of tasks are evaluated. From the computation results, one of the

hewstics (forward) performed very well, generating in many cases schedules with total tardiness very close to zero.

The proposed heuristic procedures are compared on real-life data from n local civil engineering form. One of the

hrunsuc procedures (the forward heuristic) tends to dommate the others by generating a solutton where all machines

were kept occupied as much as possible (Tables 2 & 3). However this strategy tended to produce lots of preemptions

whxh may be demmental to other objectives of the firm. The backward scheduling heuristic allocates larger t&s

to the slower machines whenever there is an assignment option. This produced less number of preemptions at the

cost of increased total tardiness. Both heuristics performed considerably better than the existmg solution strategy

(Tables 2&3). In an extensive computational study. we compare these methods with existing practice at the firm

and extensions of others that have been proposed in past research and show tbelr effectiveness under a variety

of problem scenarios (Table ?a-c). A statistical study (table J&b.) using One-wa.v Anova with blocking on data

size and paired I-IPS~J shows that the forward heuristic out performed the backward heuristic. while the Backwvd

heurisuc was better than the extended EDD heuristic for large problem stzes. Those comparisons that dtd not show

statistical significance are marked m bold. We also studied the effect of congestion in the system by varying the

THREE STAGE GENERALIZED FLOWSHOP 343

rate that tasks arrive to the system. It was seen that the above results hold irrespective of the congestion. i.e. there

is no observed interaction between the congestion factor and rhe problem size in case of the rested heuristics.

In the future we plan to study the worst case behavior of these algorithms. Analytical results were derwed by

Sriskandarajab and Sethi (1989) for the two stage generalized Rowshop problem where the objective is to minimize

the makespan. However the tardiness problem is considerably more difficult and analytical results in the area we

few. From the computation results of the forward heuristics, it appears that the average pxfomxmce of his heuristic

is good. however this does not guarantee the same results for the worst cas~c performance. Similarly deriving a good

lower bound for such problems wll aid in solvmg these problems to optimality by a branch & bound algorithm. a

the upper bounds given by the heurisucs are fairly tight.

344

5 References

MOSHE DROR AND PAL% A. MULLASERIL

Blme~ic~. J., Eiselt, H.. Finke. G.. Lapone. G.. and Weglarz. J. (1991). “Scheduling jobs and vehicles in flexible

manufacturing systems”. The lnrernarionnl journal of FMS. 4. 5-16.

Blazewicz. J.. Ecker. K.. Schrmdt. G.. and Weglarz. I., (1993). Scheduling in Computer and Manufacturing

Sysfems. Springer-Verlag. Berlin 1993.

Blazewicz. J.. Dror. M., Pawlak. G., and Stecke. K.E.. (1994). “A riote on flexible flowshop scheduling with

two-stages”, Foundarion of Computing and Decision Science 19. 159-172.

Dell’Olmo. P., Dror, M.. and Kubiak, W.. (1993). ” ‘Strong’-‘Weak’ Chain Constrained Scheduling.” working

paper. MIS dept., University of Arizona.

Emmons. H. (1969). “One-machine sequencing to minimue certain functions of job tardiness. Operations

Research, 17. 701 - 715.

Garey. M.R.. Johnson, D.S.. and Sethi. R.. (1976). ‘The complexity of Rowshop and jobhop scheduling”,

Marhemarics of Operations Research. I l7- 129.

Hefetz. N. and Adiri. I.. (1982). “A note on the influence of missing operations on scheduling problems”. Naval

Research Logisrics Quarreriy 29, 535-539.

Jackson. J.R. (1955). “Scheduling a production line to minimize maximum rardmess”. Research Report 43.

Management Science Research Project, University of Cnliforma. Los Angeles.

Kouvelis. P. and Va&xamkis. G.L., (1994). “A two stage flexible job shop scheduling problem”. Operations

Research fzners. (in press).

Law. Averill M. and K&on, David W. (!991). “Simulation Modeling & Analysis”. cond Edition. McGraw-Hill.

Inc. New York.

Sriskandamjah, C. and Sethi. S.P., (1989). “Scheduling algorithms for flexible Rowshops: Worst and average

case performance-. NOR. 43. l-13-160.

Wlttrock. R.J.. (1988). “An adaptable scheduling algowhm for flexible flow lines”. Opernrions Research. 36.

