Three Stage Generalized Flowshop: Scheduling Civil

Engineering Projects

Moshe Dror and Paul A. Mullaserilt

October 25, 1995

Abstract

We model the working of a civil engineering firm concemned with land development as a three stage flexible
flowshop with weak chain precedence constraints and where preemption is allowed. The scheduling objective is to
minimize the total tardiness for all the projects. Since solving this problem optimally is very hard. we propose a
number of heuristic scheduling procedures which are evaluated extensively on real-life data and artficial problem

instances.

MIS Department, College of Business, The University of Arizona, Tucson, Arizona 85721.

Journal of Global Optimization 9: 321344, 1996, 321
® 1996 Kluwer Academic Publishers. Printed in the Netherlands.

322 MOSHE DROR AND PAUL A. MULLASERIL

1 Introduction

The problem of project design for land development and public works in a civil engineering consulting firm is
examined from the perspective of machine scheduling methodology. The engineering design operations, like jobs
in a manufacturing eavironment, must follow a prescribed sequence. Scheduling engineering jobs becomes very
similar to regular job scheduling if engineers are viewed as processing machines, and distinct stages of engineering
work are equated with manufacturing work centers. In this paper we describe the operation of an engineering
firm specializing in land development and public work design and cast it as a flexible flowshop with three work
centers composed of uniform machines. To our knowliedge, such a modeling approach has not been examined in the

literature in the past and in this paper we show how fitting this approach is for engineering consulting operations.

The engineering practices described below are taken from a local civil engineering firm. Project data for six
months taken from that firm is used to examine and validate the analysis presented in this paper. The objective in
scheduling such projects is customer satisfaction expressed here as minimizing total tardiness. Though the problem
description is confined to the firm observed in this study, it represents a very common setting in land development
project planning and the analysis can be easily extended to any number of similar engineering consulting activities.
We start by describing in some detail the operation of the firm in this study, followed by a mapping of the firm’s

operations into a three stage flexibie flowshop scheduling terminology.

A ci‘vil engineering firm specializing in land development and public works receives requests {customer orders)
to design land development projects. The project requests are received dynamically in time and the engineering
firm commits itself to a delivery date(s) for each project. A common land development project consists of four
main design stages: (i) an initial field study involving a field crew for on site project assessment and measurements,
(ii) development of the project design by a design engineer, (iit) transfer of the design specifications into drafting
format by a drafting engineer, and (iv) another field study conducted once again by the field crew to lay out draft
construction parameters. There are two phases to a contract. A contractual agreement between the customer and the
engineering firm specifies the due date for the first phase. after which the customer examines the drafting layout of
the project in question and comments on the design. After that, a second duc date is set for the project wherein the
company completes the field study to layout construction parameters and delivers the final product to the customer.
In many cases, both due dates are set at the initial project acceptance but the second due date might be reset
when customer examines and comments on the project design. The initial release date for each project is obtained

dynamically in time as the projects are received by the firm. Similarly the release date for the final field study for

THREE STAGE GENERALIZED FLOWSHOP 323
Phase!

e N { (\
e (iniat Stugy ‘ Project Desn;nl—.} Dnafung —
A)

|
l Retease Date |
t

Negouate Release Dates
Due Dates at start

'y

Due Date | l

Phass ll
Canstruction
Layout
l Retease Date for Phase O Due Date 1
Field Crew Project Engg. Drafting Engg.

Figure 1: A systems view of the operations

each project is obtained after the drafting format is reviewed by the customer. For most of the projects, the initial

field study (stage (i), and the final field study (stage (iv)) are conducted by a team from the field crew.

We view the process of designing civil engineering projects as a three stage flexible flowshop with uniform
machines at each stage. We start by breaking up each project into two separate projects (two jobs) with precedence
relationship. Thus, we establish a chain precedence relationship of length at most two for the modified set of
projects, derived from a given set of projects. Stages (i) - (iii) are viewed as one project with its due date, and stage
(iv) is viewed as a separate project with its own due date. The final field study (the original stage (iv) activity) is
represented as a new project which requires processing only in stage (i) and has zero processing times in stages
(i1) and (iii) of the generalized flowshop. Note that the projects/jobs can be broken up in this way because this
Generalized Flowshop is Null-continuous (Hefetz and Adiri, 1982), and since in reality there are two separate due
dates for each project — one for the completion at stage (i) and one for the final project completion (stage(iv)). A

systems view of the operations is given in fig. 1.

We now cast the problem in machine scheduling terminology. We will use the term projects and jobs inter-

changeably in this paper.

324 MOSHE DROR AND PAUL A. MULLASERIL

2 Problem Formulation

Following the notation in Sriskandarajah and Sethi (1989), a flexibie flowshop consists of a set of & > 2 machine
centers {2, Za,. .., Zk), with center Z; having m; 2> | paraliel machines. There are n projects - (parts) {Pilt <
j < n} to be processed in the flowshop. The vector #(P;) = [PjtsPj2s- - -+ Pik] denotes the processing times of the
various tasks requited by P; in centers [Z;, Z:, ..., Zi), respectively. Task pj; may be processed on any of the m;
machines in machine center Z;. In the literature (Sriskandarajah and Sethi, 1989, Wittrock, 1988, Blazewicz et al.
1991, Blazewicz, et al. 1994, and Kouvelis and Vairaktarakis, 1994) the common assumplion is that the machine

centers are composed of identical parallel machines.

In the case of the civil engineering firm in this study, the machine centers are composed of uniform machines.
More specifically, in stage (i) there are four crews of field engineers available, each crew can be viewed as a machine
and the four crews are considered identical. In stage (ii), one personal computer is available to 5 engineers 10 assist
in the development of a plan for a project. Only one out of the five planning engineers can use the computer at any
given time. The computer assisted planning is about 25% faster than project planning without the computer. Thus,
stage (ii) is viewed as having 5 machines; four identical machines and one machine 25% faster. Stage (iii) has 3
computers available to five drafting engineers. Hence, stage (iii) consists of three high speed identical machines
and two low speed machines (manual drafting). Consistent with the usual scheduling assumptions, no engineer
may work on more than one project at a time, and no project can be assigned to more than one engineer at a time.
Also, if a task is assigned to a fast machine in any stage, in case of preemption it has to complete its processing
on a fast machine. The same holds for the tasks processed in some stage on a slow machine. We cannot switch
the processing of a task at any stage from a fast machine 1o a slow machine and vice versa. We use time units
corresponding to half days (reflecting the practice of the civil engineering company in this study) and we allow for
preemption which respects machine type. A diagram for the civil engineering project planning operations is given

in Figure 2.

Following the notational classification of scheduling problems (see for instance Blazewicz, et al, 1993), the
problem described above is represented by F3|m = P4.my = Q5,m; = Q5.r;, pmin, weak chain < 2|3 T;.
where F3 represents the flowshop environment with 3 machine centers. m, = P4 represents that the first machine
center has four identical parallel machines, my = Q5 represents that the second machine center has five parallel
uniform machines, and m; = Q5 represents that the third machine center has five parallel uniform machines. We

ailow for task preemption (the tasks’ processing time is measured in half day units). The precedence relationship

THREE STAGE GENERALIZED FLOWSHOP 325

OUE DATE | DUE DATE it
Stage {1 Stage {u} Stage {uj . Stage (iv} .
Fieid Crews Planning Drafting Field Survey

On Sue Project
Assesment

Manual Pfan

Manual Drahim%-o
Manual Draﬂm%—.

Computer
Assisted

Manual Plan.

Manuai Plan,

COMPLETED PROQUECTS

Computer
Assisted

Caomputer
Assisted
L ,

Figure 2: Layout of the facilities

Manual Plan.

Computer
Assisted

between tasks is that of weak chain (see Dell'Olmo et al, 1993) and each chain has at most two tasks. In the third
field y = 3~ T}, which represents that the objective in this problem is that of minimizing the total tardiness. In
terms of complexity results, the classical F2|| 3", C; problem is NP-hard in the strong sense (Garey, et al. 1976).
Thus, F2|] 37, T; is NP-hard in the strong sense as well. The flexible flowshop represents a generalization of the
traditional one, thus, its complexity classification is no easier than that in the corresponding traditional flowshop
cases. In terms of heuristic algorithms, Blazewicz. et al. (1994), present a simple (Johnson like) algorithm which
has a worst case behavior of 2 for a two stage flexible flowshop F2[my > 2.my = 1|{Ciner and in Kouvelis and
Vairaktarakis (1994) an improved worst case bound of 2 — 1/(maz{m,.m:}) is presented for the more general
case. Sriskandarajah and Sethi (1989). present a several similar algorithms with bounded worst case behavior for

different variants of two stage flexible flowshop problems where the objective is to minimize makespan.

For the three stage flexible flowshop with tardiness related objective, to our knowledge. no bounded worst
case behavior algorithms have been described in the literature. Wittrock (1988), describes a decomposition based
heuristic which was tested for sequencing printed circuit board cards on insertion machines grouped into families
of ane, two. and three machines respectively in a three stage flexible flowshop setting. Wittrock's objective was
to minimize the makespan and thereby reduce the auxiliary storage requirements in the system. He reports good
results for his algorithm as compared to a lower bound on the schedule length when using real life industrial data
for a weekly production. In this paper, we present an algorithmic approach which constructs schedules for a set

of projects which the engineering firm received over a course of six months. The projects’ data presented here

326 MOSHE DROR AND PAUL A. MULLASERIL

is real-life data and the tardiness for the projects is computed in half day units which closely approximates the

operational units in our company.

3 Description of the Proposed Scheduling Procedures

In this section we introduce three procedures for scheduling tasks in our three stage flexible flowshop, The Forward
Heuristic. The Backward Heuristic and The Earliest Due-Date Heuristic. We also discuss a post optimization swap
heuristic called the Interchange Improvement procedure. An example problem to illustrate the mechanics of each

of these heuristics is also presented.

Currently, the firm’s practice is to schedule projects for the entire week each Monday momming. Since preemption
of tasks is allowed, a task whose processing was staried in the previous week (at any one of the three processing
stages) but has not yet been compieted is regarded as a new task and where its processing time is appropriately
adjusted. The only continuity requirement is that the same machine type (slower or faster) is necessary for the
completion of a started task, so that tasks started on a computer will remain on it while manual tasks are done
manually later. The projects are scheduled according to an intuitive perception of job priority relative to potential
tardiness. In most cases this strategy results in a near-term Earliest Due Date (EDD) heuristic. It should be noted
that, because of a problem in accurately estimating project’s requirements or the firm’s capacity, for some projects
a due date specified at the inital project acceptance time may introduce unavoidable tardiness (i.e., the minimum

processing time required for a project already results in some tardiness for that project given the due date).

Project data for a six month of firm's operation was made available to us. and hence it was easy to calculate
the tota} tardiness as experienced by the firm during that period. In real life the projects are scheduled on line each
Monday momning from a pool of projects available at that time. Since our project information for the testing period
was in some sense more complete, we opted to assume that the EDD heuristic would be the appropriate candidate
to represent the firm’s present performance and serve as a bench mark for comparison instead of just reporting
the current operational tardiness. We will first describe the EDD heuristic as applied to this civil engineering
project planning and disregard for the time being the weak chain precedence relations. This precedence relation

is imposed directly in the heuristic procedure.

THREE STAGE GENERALIZED FLOWSHOP 327

3.1 Earliest Due Date (EDD) Heuristic

The earliest due date (EDD) algorithm (known as Jackson’s rule, Jackson. 1955). simply schedules the projects
in order of non-decreasing due dates. For this F3|m, = PA.my = Q5. m; = Q5,r;, pmin| T; T; problem, this
EDD heuristic is extended in an attempt to reduce the mean flow time for the projects, always favoring the faster
machines in each stage whenever there is an assignment option. We completely scheduie the tasks of a project in
increasing order of the stages, before scheduling tasks from the next project. As soon as the a phase | project is
completely scheduled, the corresponding phase 2 project is added to the list of tasks to be scheduled. A description

of the modified EDD heuristic for the three stage Generalized Flow Shop is given below.

Step 1 Construct a list L of projects sorted according to non-decreasing due dates d;.

Step 2 Remove the project at the head of the list.

Step 3 Starting with stage 7 := |, we schedule each task of the project on the fastest available machine. so that we
do not violate constraints imposed by the release date r; or by the processing times of a task in an earlier

stage .

Step 4 As soon as we completely schedule all the stages of a phase 1 project, the phase 2 project in the chain

precedence constraint is added to the list and the list re-sorted.

Step 5 We repeat step 2,3 and 4 until the list L is empty.

3.2 Forward Scheduling Heuristic

Emmons (1969) showed that in 2 one machine environment. the shortest processing time (SPT) is optimal if it yields
a sequence where all the tasks are tardy. He also showed that the earliest due date heuristic (EDD) sequence is
optimal if it yields a sequence where at most one job is tardy. We note that the engineering firm in this study practices
accepting as many projects as possible even if it initially results in tardiness for some or all the projects. Thus, it
is important for our heuristics to scheduie a family of projects even when none of the projects can be compieted
on time. Following Emmons single machine SPT-EDD observations. our first heuristic can be characterized as a
combination of SPT and EDD approach. We favor the faster machine in each stage whenever there is an assignment
option. However, since preemption of tasks is allowed, in the Forward and Backward heuristics we reschedule the
availabie tasks each time a new release date is reached. In other words, we apply the two heuristics to the subset

of tasks available between any two consecutive release dates. We break ties using the SPT rule.

328 MOSHE DROR AND PAUL A. MULLASERIL

Let § be the number of stages (in this case 3) and m; be the number of avajlable machines in stage i where
i € (1,...,5). Let R be the list of release dates sorted in non-decreasing order. Identified with each project
Jj are: a release date 7;, a due date d;, a vector of tasks {Jji, ...y, Jj5]. @ vector of processing times
{Pi1seey Pjiyeer Prsls and a vector of available times (defined later) ;1.¢j;,....¢;s]. The available times are
determined dynamically while assigning tasks. Associated with each project J; is a project J; reflecting the second
phase of the original project. J)'s release date is determined by the completion date of project J;, even though its
due date d; is usually known in advance. Note that J} has processing time zero in all stages except the first stage.
A set of available tasks in any time interval [¢;, ;] consists of those tasks of a project whose associated tasks in an
earlier stage and phase (if applicable) have been completely assigned. Thus the set of available tasks can be started
in the time interval [2;,¢;] without conflicting with the processing of its predecessors. The set of predecessor tasks
for a task J;, includes ail tasks that in previous stages of the project j and portions of the task already scheduled

in the same stage. The heuristic is as follows:

Step 1 Consider the release date at the head of the list R, say r. Preempt already scheduled tasks in all machines
(in all stages as well) at this release date 7. Preemption of a task in phase 1 project will result in the removal
of all scheduled tasks of the project in subsequent stages and the entire removal of the corresponding phase

2 project (if scheduled).

Step 2 Start with stage ¢ := 1. Construct a list L of available tasks Jj; in the interval (r.7 4 1), where 7+ 1 is
the next distinct release date in the list R after release date r. Set the available time for the first task in the
three stages of a project J; in the list as tj; = r, the available times of tasks in subsequent stages will be
determined by the completion time of its predecessor tasks. This also applies to projects that are the phase 2
project in the weak chain precedence relationship. To this list add the set of unassigned pre-preempted tasks
in stage i from step 1. The available times for the first of these tasks in a project are set as r. The available
times for tasks in stage 7 that are not yet completely scheduled are determined from the completion times of

its predecessors. Sort the list L according to nondecreasing available times t};.

Step 3 Schedule each successive task from this list. preemptively so as to minimize its completion time. Apply
the shortest processing time (SPT) rule for tasks with the same due date, always favoring the faster machines
in each stage whenever there is an assignment option. If any task Jj; is compictely scheduled, update the
available time of the task in the next stage of that project according to f;; + Pji < tji,y such that it does
not conflict with its predecessors. Update the available times of tasks in stage ¢ whose predecessors have

changed.

THREE STAGE GENERALIZED FLOWSHOP 329

Project | Release Phase | Phase 11
Date I | IT'| [I] | Duedate | I | Due Date
Job 1 0 30(30(20 60 6 70
Job 2 0 20120 | 10 60 10 70
Job 3 10 16 {20 | 20 60 10 100
Job 4 20 10)10] 30 70 10 90

Table 1: Processing times in the examplé problem

Step 4 Repeat step 2 and 3 with 1 := ! + | until the last stage. If at stage 3 a project J; is completely scheduled.

then insert the next phase .J; of that project into list L.
Step 5 Repeat steps 2.3 and 4 until the list L is empty.

Step 6 Repeat steps 1, 2,3 4 and 5, until the list R is empry.

If there are n tasks. the time complexity of this algorithm is O(n? log n). We illustrate this procedure in the example

below.

Example 1: Consider the set of projects in Table | to be scheduled on a flow shop with three stages and two
machines in each of the stages. The second machines is twice as fast as the other machine in each stage. The
numbers in the columns marked /. //, [II are the processing times for the tasks in each of those stages. In first
iteration, we schedule projects with release time in the interval 0. 10), which are projects 1 and 2. In stage 1, since
the available times for both projects are the same. we use the SPT rule to break ties. Project 2 has tasks with the
shortest processing time. hence. we schedule it first. on machine 2 (the faster one). Project ! is also scheduled on
this machine. In stage 2 once again project 2 has the earliest avaiiable time and is scheduled first on machine 2.
thereafter project I on machine 2. At the end of stage 3. on completion of phase t of projects | and 2, we add the
phase 2 projects to the list, labeled as tasks 1001 and 1002. Since the processing time of task 1001 is shorter than

the processing time of task 1002. it is assigned first to machine 2, which is idle. At the end of this iteration we

have the assignment as shown in figure 3a.

In the second iteration we consider tasks in the interval [10, 20). which consists of only task 3. Since the release
date of this job is 10 all tasks of machine I in stage 1 after this date are preempted. Similarly all tasks in stages 2.

3 and Phase 2 tasks in stage 1. namely tasks 100! and 1002 are preempted. When assigning tasks in each stage.

330

m/c

m/c

mic

m/c

mic

m/c

Stage |

Pl o

MOSHE DROR AND PAUL A. MULLASERIL

"~

[T n Tnj

il

0 10 20 0 50 70 80 20
Slage 2
1
2 T T T
[10 20 30 10 50 0 70 0 %0
Stage 3
1 13
2 2] [l T n]
0 10 20 30 0 50 0 70 80 %0
Fig). Example showing the job assignment us‘ing the forward scheduling heuristic.
Stage [
T
Lo T 1 o [2] s 43
) K 01
[} 10 20 30 40 50 60 70 80 %0 100
Stage 2
1 [42 [s
2 J3 J1
[} 10 20 30 4 50 60 70 80 90 100
Stage 3
1 [Ja 1
b4 4 J1
0 10 20 3 40 50 60 70 80 90 100

Fig 4. Example showing the

job

nts using the backward scheduling heuristic.

THREE STAGE GENERALIZED FLOWSHOP

Porward Scheduling Heurisgtic

+xv No

«vr No

Field-Crew 1
Assignments are made on this machine =<+«

Field-Crew 2
Start Finish Phase 2 Tardiness

0.00 10.00 N 0.00
10.00 25.00 N c.go
25.00 30.00 Y 0.00
50.00 53.00 Y 0.00

Project-Planning 1
Assignments are made on this machine *+=»

Project-Planning 2
Start Finish Tardiness
10.00 20.00 0.00
25.00 40.00 0.00
Drafting-Engineer 1
Assignments are made on this machine =<«

Drafting-Enginser 2
Start Finish Tardiness
2¢.00 25.00 0.00
40.00 50.00 0.00

Ja: Assignments for after iteration 1

1002
1002

«w+ No

Job

o

Field-Crew 1
Start Finish Phase 2 Tardiness
25.00 30.00 Y 0.00
30.00 33.00 Y 0.00
Field-Crew 2
Start Finish Phase 2 Tardiness

0.00 10.00 N 0.00
10.00 18.00 N 0.00
18.00 33.00 N 0.00
33.00 34.00 Y 0.q0
40.00 45.00 Y g.00
58.00 61.00 Y 0.00

Project-Planning 1
Assignments are made on this machine *+<

Project-Planning 2
Start Finish Tardiness

10.00 20.00 .00
20.00 30.00 .00
33.00 48.00 0.00

Drafting-Engineer 1
Assignments are made on this machine *+=

Drafting-Engineser 2
Start Finish Tardiness

20.00 25.00 0.00
30.00 4¢.00 0.00
48.00 58.00 .00

Figure

3b: Assigonments for after iteration 2

331

332 MOSHE DROR AND PAUL A, MULLASERIL

Backward Scheduling Heuristic

Pield-Crew 1
Job Start Finish Phase 2 Tardiness

1 -20.00 10.00 N Q.00
1002 60.00 €7.00 Y 0.00
1002 67.00 70.00 Y g.00

Field-Crew 2
Job Start Finish Phase 2 Tardiness
2 30.00 40.00 N 0.00
1001 €7.00 70.00 Y 0.00
Project-Planning 1
Job Start Finish Tardiness
2 0.00 20.00 0.00
1 20.00 50.00 0.00
Project-Planning 2
Job Start Finish Tardiness
2 50.00 50.00 0.c0
Drafting-Engineer 1
Job Start Finish Tardiness
2 50.00 60.00 0.00
1 £0.00 60.00 0.00
Drafting-Engineer 2
Job Start Finish Tardiness
1 50.00 €0.00 0.00

Figure 4a: Assignments after iteration 1

Field-Crew 1

Job Start Finish Phase 2 Tardiness
1 0.00 30.00 N 0.00

1002 50.00 57.00 Y 0.co

1002 57.00 €0.00 Y 0.00

Field-Crew 2
Jab Start Finish Phase 2 Tardiness
2 0.00 10.00 N 0.00
1001 80.00Q 83.00 Y 0.00
Project-Planning 1
Jeb Start Finish Tardiness
2 10.00 30.00 0.00
1 40.00 70.C0 0.00
Project-Planning 2

**+* No Assignments are made on this machine *+*+
Drafting-Engineer 1
Job Start Finish Tardiness
2 40.00 50.00 0.00
Drafting-Enginear 2
Job Start Finish Tardiness
1 70.00 80.00 0.00

Figure 4b: Assignments after move left and move right operation.

THREE STAGE GENERALIZED FLOWSHOP 333

the preempted tasks are added to the appropriate lists. In case of stage | phase 1 tasks, the available time is 10. In
case of other stages and for phase 2 the available times are computed dynamically. The assignment at the end of

this iteration is shown in figure 3b.

A ganit chart showing the final schedule for the example in Tabie 1, is presented in figure 3. Tasks that pertain

to phase II of a project Jj, i.e. the second project in the chain precedence constraint is denoted as J;-‘

3.3 The Backward Scheduling Heuristic

The backward scheduling (BS) heuristic is an aiternative method for scheduling the projects in this civil engineering
context. The BS procedure for scheduling the projects starts by assigning the project whose due date is the latest
and then sequentially assigns the tasks with earlier due dates. Its emphasis is on flow time at each stage by assigning
the longer tasks to the slower machines. The time adjustments are initially made by updating the starting times for

each project at each stage so that it can start as soon as possible.

For any given pool of projects, schedule the project with the latest due date (break ties according to largest
processing time in the last stage) so that it will be completed at or before its due date. After scheduling all the
projects, adjust the times by moving the starting times to the left whenever it is possible as long as they are
non-negative. In case of a negative starting time, move the project to the right by the least amount so the starting
time is at least the release date. Adjust all the projects whose schedule is affected by moving their processing to
the right by the same amount. Whenever a choice is possible. assign the longer task on the slower machine when
assigning from right to left in time (and stages). In this case note that when we schedule preemptively, it is done so
backwards. This means that while scheduling task backwards we may remove portions of already scheduled tasks

prior to the due date of the job being scheduled upto the release date of the project.

Once again. let § be the number of stages and m; be the number of availabie machines in stage i where
i €(1,....5). Let R be the list of release dates sorted in non decreasing order. We now define a related quantity.
targer completion time t;; of any task i as the latest date that the task must be completed in stage i for the
project J; to be on time. As discussed before, identified with each project J; are: release date ;, due date d;, a
vector of tasks [Jji, ..., Jjir ... J;5], a vector of processing times [P, ..., Pji, ..., P;s}, and target completion times
[tj1s .- tjin .oa). Associated with each project J; is a project J} reflecting the second phase of the project. whose
release date is the same as that of J; but whose available time for the first stage is determined by the completion

date of project J; and whose processing times are zero in all stages except the first stage. A set of available tasks

334 MOSHE DROR AND PAUL A. MULLASERIL

in any time interval {Z;,1;] consists of those tasks of a project whose associated tasks in an later stages and phase
1 (if applicable) have been completely assigned. The set of succesors of a task is the tasks in subsequent stages of

the project and portions of the task already scheduled. The algorithm is as follows:

Step 1 Stant with the release date at the head of the list R, say r. Preempt all tasks in all machines in ail stages
at this release date r. Set the available time of the pre-empted tasks (if there are any) as r. Preemption of
a task in phase 1 project will result in the removal of all scheduled tasks of the project in subsequent stages

and the removal of the corresponding phase 1 project if a phase 2 task is preempted.

Step 2 Starting with the last stage i == S. Construct a list L of available tasks J;; in the interval (r, 7+ 1). To this
list add the set of unassigned pre-empted tasks in stage i from step I. Set the completion time for the last
stage of project J; as ¢j; = d; for all tasks in the list L. Sort the list L according to non increasing tasget

completion times ¢};.

Step 3 Remove the first available task in stage ¢ from the list L and schedule the task with the latest time £;;
preemptively (break ties according to longes: processing time in the last stage) so that it will be completed at
or before its due target completion time ¢j;, favoring the slowest machine whenever there is an assignment
option. If a task does not fit (too long), we need 10 move tasks to the right on one of the machines in order
to schedule this task. Determine the machine where the smallest such movement can be made and move all
tasks on that machine to fit the task in question. Determine all other tasks affected by such movement of

tasks and move them also, so that the schedule made thus far remains feasible.

Step 4 If any task Jj; is completely scheduled. update compietion time of the task in the previous stage of that
project according to ¢j;—; < tj; — Pj; such that it does not conflict with its successor tasks. Update the target
completion times of any task in stage { whose set of successors tasks has changed. If at stage 1, introduce
into the list L any task that becomes available as a result of completely scheduling the phase 2 project in a

weak chain precedence.
Step 5 Repeat step 2,3 and 4 with 1:=¢— 1 untl i = i.
Step 6 Repeat steps 2. 3, 4 and 5, until the list L is empty.

Step 7 After scheduling all the projects in the interval (7.7 + 1), adjust the times by moving the starting times to
the left whenever it is possible as long as they are non-negative and the schedule remains feasible. In case

of a negative starting time. move the project to the right by the least amount so the starting times become

THREE STAGE GENERALIZED FLOWSHOP 335

non-negative. Adjust ail the projects whose schedule is affected by moving their processing to the right by

the same amount.

Step 8 Repeat step 1 to 7 until R is empty.

The time complexity of this algorithm is O(n? log n) as well.

Example 2: We illustrate the BS heuristic using the same example as before. Start with the intervai [0, 10),
with tasks 1 and 2. Assign first the Phase 2 tasks, in this case phase 2 task 2 (label 1002) on machine 1 starting
at time 60 and ending at time 70. Phase 2 task | (label 1001) is assigned on machine 2 from 67 to 70. Tasks are
then assigned on stage 3, 2. and 1. We note that task 1 on machine 1 stage 1 is assigned from -20 to 10. Hence we
need to move the tasks to the right. The assignments at the end of step 3 are shown in figure 4a. Next we move
the tasks as far left as possible in step 7. The assignment after this phase is shown in figure 4b. The procedure
is repeated for intervals [10.20) and [20,...]. We preempt all tasks at time 10 and 20. The final assignments are

displayed in the gantt chart in figure 4.

3.4 Interchange Improvement Procedure

We now present a project interchange heuristic which receives as its input a schedule between two consecutive
release dates. The objective of the heuristic is to effect the maximum reduction of the total tardiness by a series of
pairwise swaps of the constituent tasks (belonging to the same stage) of pairs of projects. Suppose, we define for
all tasks ¢ in any project j, a quantity

T;i = max(0.(d; - Cji)

Cj; being the completion time of task i in project j. then

where ¢ € (1,...,5). So, using T}; as a measure to select candidate pairs will always result in one selecting the
tasks in the last stage, whereas the project may be delayed due to a delay in any of the tasks in other stages. Hence
we introduce the notion of delay. The delay of a task is defined as the maximum of the difference between the
target completion date and the actual completion date, and zero. where the target completion date ¢j; of any task

Jji in stage i of project J; is calculated as

i s
t;i = max((r; + szk)-(dj - z Pie))
k=1 k=141

336 MOSHE DROR AND PAUL A. MULLASERIL

where 1,k € (1,..,5). Thus, delay Dj; for a task belonging to project j in stage i is given by:
Dy; = max(0,(t;; — Cj:))

For any stage i, evaluate interchanging a task with the highest delay with all other tasks in the same stage. The
pair of tasks that decrease the total tardiness the most is selected for a pairwise interchange. We continue until we

can no longer decrease toual tardiness by pair-wise interchange of tasks. The heuristic is formally stated below.

Step 1 Starting with stage i = 1, construct a list L of all tasks in stage i. Evaluate the defay of each task in the list

L. Sort the list according to non-increasing delay.

Step 2 Remove the first task on the list L and evaluate interchanging this task with other tasks in the list by
calculating the potential decrease (savings) in the total tardiness. Select the pair that effects the highest
positive savings and implement the interchange. When making a pairwise interchange of tasks with unequal
processing times, move tasks if necessary to the right to accommodate a larger task and move tasks to the left
10 fil) a void left by a larger task. We use the same routines for moving left and right as done in the backward
scheduling heuristic. In the case of moving tasks to the right we may need to move tasks in subsequent stages

so that is no conflict in the processing of tasks.
Step 3 Repeat steps | and 2 for all other stages.

Step 4 Repeat steps 1 to 3 until no more improvement in total tardiness can be made.

If there are n tasks, the time complexity of the interchange procedure is O(n®).

4 Computation Results

For the six month project data obtained for the engineering firm, we have the release times, completion times, and
the processing requirements for each project. We rerun the two heuristics (FS. BS) each Monday updating the
corresponding pool of projects by adding all the new projects released since last Monday (i.e. on line scheduling).
The EDD heuristic was used for benchmarking the performance of our heuristics. The results are tabuiated in
Table.2. We refer to the Forward Scheduling, Backward Scheduling and the Earliest Due Date heuristics as Alg./,

Alg.2 and Alg.3 respectively.

THREE STAGE GENERALIZED FLOWSHOP 337

I With Improvement Without Improvement

Algl| Alg2 | Algl | Alg2 | Alg3

Total Tardiness 9.00 | 217436 | 568.32 | 2466.21 | 5850.50
Average Tardiness 0.14 34.51 9.02 39.15 92.87
Maximum Tardiness | 6.00 105.67 63.01 136.50 | 251.50

Table 2: Computation results for six month scheduling horizon

In an effort to study the performance of these algorithms under varied circumstances, we generated problems
of size 10 to 60 tasks in increments of 10, based on the data given to us, generating 20 problems in each size.
The tasks were generated using a uniform distribution, since it was found to best fit the processing times of typical
tasks encountered by the firm. The inter arrival time between tasks arriving to the system was modeled using an
exponential distribution. We use Unifir I1. a software package developed by Averill Law and Associates, Tucson and
the methodology prescribed by Law and Kelton (1991) to determine the suitability of the probability distributions.
The upper and lower bounds of the distribution were determined from the data given. It was observed that tasks
arrived to the system at the frequency of 3 to 4 tasks every ten days. We used a direct proportion of this arrival
rate (called congestion factor) to determine the arrival rate for the different data sets. This is done, so that the
scheduling horizons for each data set is reduced appropriately, so that the tardiness results are comparable. The
resuits of these computations are tabulated in fable 3. while table Ja-c give a comparison of the results for different

values of the congestion factor,

We observe that the Forward heuristic (Alg.1) tends to dominate the others by generating a solution where
all machines were kept occupied as much as possibie (Table 2). However this strategy tended to produce many
preemptions which may be derimental 10 other objectives of the firm. The backward scheduling heuristic (Alg.2)
allocates larger tasks to the slower machines whenever there is an assignment option. This produced fewer preemp-
tions at the cost of increased total tardiness. The number of preemptions produced by both these heuristics for 20

sample problems in each category of size is compared in table 2a.

It is also observed (Table 3) that the pairwise intecchange heuristic does not improve the initial tardiness results.
by a significant amount uniess the congestion to the system is high. In table 3, on actual data from the firm the
congestion is high because the firm accepts as many projects as possible (high congestion) even if it results in

tardiness for some or all of the projects. If the congestion is low the interchange procedure does not significantly

338

MOSHE DROR AND PAUL A. MULLASERI

Forward Heuristic | Backward Heuristic

Min, Max. Min. Max.
Size 10 | 74 136 13 38
Size 20 | 250 433 51 87
Size 30 | 350 726 87 155
Size 40 | 465 1137 154 211
Size 50 | 522 1161 183 285
Size 60 | 673 1356 225 329

Table 22 Comparison of the number of preemptions

339

THREE STAGE GENERALIZED FLOWSHOP

U UORNS IR Wk SSAUNPIR] IR A J0 dFeIdAe Y ST (SSAUPIL Ueaw dTriaay) SN0 OM) 18I 3t ug sauady oY),

BN gaea ug 07 S1 3715 ajdues

ausunag (JIA - € iy puv onisunag| preamyangg - 7 3|y NSUNAY] prEMIo, - | SV -A0N

69'8L1 66'(8 6§17 18°¢9 00'1Z 6 19 vC6 8l 09 221§
90'0b | (12411 ST8I $$°CS LW €T $0'SS 3T PHT s 2z
1Tl 9776 08'6C 05°IS 68'8C 9L'9 1798 ozvl Iv's oF 22§
U611 88°5S1 Lo vy o€ oLLy s 6TTh $5°91 vy of 228
vo't6 81'26 36°61 vO0g $0'9¢ 23 91Tt 11z Sry 0¢ 228
95'b¢ R Wt 89 LTSy LEO 088 LI'sT L90 01 228
anspanay ywawasosdury gim)

6T 081 12001 vo'IT 0759 [1%4 LSl L1'69 oo $§1 09 2213
T4d7] £LZ8 STBI LS o' €17 8696 8901 Pie 05 22§
bS'Ebl 8L°L6 o867 LOTS $6'0€ 9L'9 oLLS 144 Ir's oF auy
£9°0C1 §9°021 vo'bT §90¢1 bo'Ie ws 9Ly Wyl TN 05 azs)
96 L6901 866l 9L'0(£6'6€ v8'E g4 0T Shy 02 28]
95°bE 9¢ 1€l W6€ 69 sysy LEO 688 1992 190 TE
Msunay -:uEu>=.=. [11}] -===_2

£y 793y {3V €3y 74V 13v ¢y 781y { iy wieg ndug

E.{»L:.h :::E,;.:‘< :=N\<

Z 4.;.34; .q.ﬂ.::ﬁ-ka_h _=v...\< NRBLNBY

[IS f SSAPIN | upapy ATDLIY

r)ep Indul PaIRNUNS Jo'I7IS YR v sjuwpsadxd 07 Jo synsas vonimndwo)) i dqe],

340

Table 3a. The performance of the forward heuristic at various values of the congestion factor.

MOSHE DROR AND PAUL A. MULLASERIL

|/nput Dara Cong = 0.25 Cong = 0.50 Cong = 1.00 Cong = .25 Cong = 1.50
Phase | Phase 2 | Phase | Phase2 | Phase | Phase2 | Phase | Phase2 | Phase! Phase?
Size 10 2.96 1.93 1.48 1.03 0.67 0.37 0.49 0.30 0.44 0.30
Size 20 26.22 2555 14.92 14.24 445 5.84 2.68 215 1.76 1.38
Size 30 51.90 57.25 27.67 34.88 6.30 7.1 3.23 342 1.19 1.25
Size 40 66.91 84.98 35.65 48.51 5.10 5.539 2.03 2.00 0.88 0.8
Size 50 85.15 111.82 38.53 52.61 2.14 2.13 1.09 1.01 0.46 0.35
Size 60 101.93 140.49 47.02 70.52 2.09 1.98 0.98 0.88 0.43 0.32
Table 3b. The performance of the backward heuristic at various values of the congestion factor.
[input Data | Cong = 0.25 Cong = 0.50 Cong = 1.00 Cong = 125 Cong = 1.50
Phase | Phase2 | Phase! Phase? | Phase ! Phase2 | Phase] Phase?2 | Phase ! Phase?
Size {0 30.80 61.27 41.24 66.06 26.61 45.48 20.90 35.56 18.59 40.28
Size 20 68.31 89.83 53.15 86.17 22.20 39.93 15.82 31.85 14.13 27.58
Size 30 102.80 140.15 51.74 74.10 17.47 3491 15.02 3299 11.31 20.56
Size 40 (BRI 169.49 48.32 78.77 14.17 30.46 11.36 23.99 8.74 17.64
Size 50 107.50 151.25 43.56 37.34 10.68 21.40 8.95 16.84 7.69 12.80
Size 60 126.35 185.42 59.31 117.71 10.38 22.82 9.17 17.19 7.13 11.46
Table 3c. The performance of the EDD heuristic at various values of the congestion factor.
npur Daza | Cong = 0.25 Cong = 0.50 Cong = L.00 Cong= 1.25 Cong = 1.50
Phase ! Phase2 | Phase! Phase2 | Phase! Phase2 | Phase! Phase2 | Phase! Phase?
Size 10 23.40 18.98 16.53 13.45 8.89 6.92 8.05 6.24 7.04 5.57
Size 20 73.17 68.23 57.00 33.36 3248 30.36 28.25 25.99 17.96 16.57
Size 30 121.84 116.02 90.63 86.35 44.37 41.10 33.42 30.67 21.89 19.51
Size 40 171.16 164.63 123.53 118.22 56.03 51.91 40.99 3749 25.99 2338
Size 50 213.63 207.89 | 149.13 144.31 56.98 33.52 38.14 35.36 17.93 16.00
Size 60 258.34 25397 185.61 178.98 71.53 66.62 46.53 42.66 20.11 17.68

Note:- The tigures in cach of the two columns (Average mean tardiness) is the average of the mean tardiness from each simulation run.

Sampie Size is 20 in each experiment

34]

THREE STAGE GENERALIZED FLOWSHOP

0000 0000 0000 pleaviorg] ‘SA PIEMIO
0000 0000 0000 QU3 S premydey
0000 G000 0000 G sa plemtoy
09 374§

0000 0000 000°0 plemydey] S plumioj
oo 0000 0000 Q3 sA piemydey
0000 0000 0000 (ICF3 s piesang
0§ 371§

0000 0000 0000 pIEmyaRg] "SA pIemIo |
0000 000°0 0000 d:1 'sA premyoey]
0000 0000 0000 (17] '$A pleadoyd
Op 7S

£200 <00 1000 plemyang ‘sa piesio]
16%°0 6550 0000 AU "§A presoeg
0000 0000 0000 U sa presdo,]
0¢ 21§

0000 0000 0000 PIEMYIR(] 'SA PIEMIO,
026°0 120°0 1000 A3 sA plespegy
0000 0000 0000 (113 'sA plemio g
07 s

0000 0000 0000 plamyoeg| SA piemio]
£00°0 1000 000 I 'sA prempdegy
0000 0000 0000 CICI 'sA piemtod
01 g

anjea-d anjea-d anjea-d
D401 xnu Z MY}] asoi |
(nsinay yusmaanadiy M) SAISLINAY 231y} JO

aauvwsopad ay; Suireduwios)5a)-} pasied Jo synsay Gy AqRL

0000 0000 0000 PIEMNIBE] “SA PIEMIO]
1000 0000 0000 CICI "sA premyang)
0000 0000 0000 I 'sa piemdoy]
09 37 L
0000 0000 0000 preMORE] "SA PlEMIO.]
000°0 0000 0000 A "sA plempdrg
0000 000 0000 UU:T 'sA piemioy
0s 7
0000 000°0 000°0 PIRMNIRE] “SA PIRMIO,|
0000 0000 0000 3 sA presyory
0000 0000 0000 CIUH 'SA pirmiod
[ALh]
0000 0000 0000 PIEMAICE] “SA PIEMIC |
SLLo 1o 0000 (A3 " SA plesYarg
0000 0000 000°0 R sa pleaioy
0% 2715
0000 0000 0000 pITMNIRE] “SA PIRAMIO)
60r°0 §r1°0 Yoo U 'SA pIemYdRg]
0000 000°0 0000 QT 'SA pammloy
07 271y
0000 0000 0000 parmYRY] SA pIeMmIO,|
€000 0000 €0oo CI(13 'SA premydeg]
0000 0000 0000 U] SA parmia]
[1] X4
anjea-d anpea-d anjea-d
pavy oy 7 asmy g 1 st

(GusLnay Juansasoadur) Jnoypm) s
uruiogaad 3 Junwdwod ysag-) paind jo synsay

N3y 1Y) jo

(Bp 3G,

342 MOSHE DROR AND PAUL A. MULLASERIL

decrease total tardiness. In some cases the pairwise swaps actually produced worse results because they were
applied only to the schedule generated between two adjacent release dates and thereafter the schedules were not

undone.
5. Summary

In this paper we study a common crew scheduling problem in a civil engineering firm concerned with land
design and development. The probler is modeled as a three stage generalized flowshop problem with weak chain
precedence constraints and where preemption of the tasks are possible in each of the stages. The modeling aspects
are interesting because :- (a) it represents a very common setting in land deveiopment project planning and the
analysis can be extended to any number of similar engineering consulting activities. (b) we establish a weak chain
precedence relationship of length at most two, to model the fact that each contract actually consists of two separate
phases, each with its own due date. (c) we extend the frame of generalized flowshop to cover uniform machines
in each stage. (d) to our knowledge there is only one other paper on three stage flexible flowshop scheduling

(Wittrock, 1988). In that paper, the issue of precedence constraints and preemption are not considered.

We examine alternative scheduling approaches for minimizing tardiness in the context of the generalized flow-
shop. In view of the problem complexity we consider only heuristic solution methods. The impact of post-heuristic
optimization techniques such as pairwise swaps of tasks are evaluated. From the computation cesults, one of the

heuristics (forward) performed very well, generating in many cases schedules with total tardiness very close to zero.

The proposed heuristic procedures are compared on real-life data from a local civil engineering form. One of the
heuristic procedures (the forward heuristic) tends to dominate the others by generating a solution where all machines
were kept occupied as much as possible (Tables 2 & 3). However this strategy tended to produce lots of preemptions
which may be detrimental to other objectives of the firm. The backward scheduling heuristic allocates larger tasks
to the slower machines whenever there is an assignment option. This produced less number of preemptions at the
cost of increased total tardiness. Both heuristics performed considerably better than the existing solution strategy
(Tables 2&3). In an extensive computationat study. we compate these methods with existing practice at the firm
and extensions of others that have been proposed in past research and show their effectiveness under a variety
of problem scenarios (Table 2a-c). A statistical study (table 4a&b.) using One-way Anova with blocking on data
size and paired r-fests shows that the forward heuristic out performed the backward heuristic. while the Backward
heuristic was better than the extended EDD heuristic for large problem sizes. Those comparisons that did not show

statistical significance are marked in bold. We also studied the effect of congestion in the system by varying the

THREE STAGE GENERALIZED FLOWSHOP 343

rate that tasks arrive to the system. It was seen that the above results hold irrespective of the congestion, i.e. there

is no observed interaction between the congestion factor and the problem size in case of the tested heuristics.

In the future we plan to study the worst case behavior of these algorithms. Analytical results were derived by
Sriskandarajah and Sethi (1989) for the two stage generalized flowshop problem where the objective is to minimize
the makespan. However the tardiness problem is considerably more difficult and analytical results in the area are
few. From the computation results of the forward heuristics, it appears that the average performance of his heuristic
is good, however this does not guarantee the same results for the worst case performance. Similarly deriving a good
lower bound for such problems will aid in solving these problems to optimality by a branch & bound algorithm, as

the upper bounds given by the heuristics are fairly tight.

344 MOSHE DROR AND PAUL A. MULLASERIL

5 References

Blazewicz, J., Eiselt, H., Finke, G., Laporte, G., and Weglarz, J. (1991). "Scheduling jobs and vehicles in Rexible

manufacturing systems™, The International Journal of FMS, 4, 5-16.

Blazewicz, J., Ecker, K., Schmidt, G., and Weglarz, J., (1993). Scheduling in C

puter and Manufacturing

Systems, Springer-Verlag, Berlin 1993.

Blazewicz, J., Dror. M., Pawlak, G., and Stecke. K.E., (1994). A note on flexible flowshop scheduling with

two-stages”, Foundation of Computing and Decision Science 19, 159-172.

Dell’Otmo, P., Dror, M., and Kubiak, W., (1993). ™ 'Strong’-"Weak’ Chain Constrained Scheduling.” working

paper. MIS dept., University of Arizona.

Emmons, H. (1969). “One-machine sequencing to minimize certain functions of job tardiness. Operations

Research, 17, 701 - 715.

Garey, M.R., Johnson, D.S.. and Sethi, R., {1976). "The complexity of flowshop and jobhop scheduling”,

Mathematics of Operations Research, 117-129.

Hefetz, N. and Adiri, I.. (1982). A note on the influence of missing operations on scheduling problems”, Naval

Research Logistics Quarterly 29, 535-539.

Jackson. I.R. (1955). “Scheduling a production line to minimize maximum tardiness”. Research Report 43,

Management Science Research Project, University of California. Los Angeles.

Kouvelis, P. and Vairaktarakis, G.L., (1994). "A two stage flexible job shop scheduling probiem™. Operations

Research Lerters, (in press).

Law, Averiil M. and Kelton, David W. (1991). "Simulation Modeling & Analysis™. cond Edition, McGraw-Hill,

Inc. New York.

Sriskandarajah, C. and Sethi. S.P., (1989). “Scheduling algorithms for flexible flowshops: Worst and average

case performance”, EJOR. 43, 143-160.

Wittrock, R.J.. (1988). "An adaptable scheduling algorithm for flexible flow lines”, Operations Research, 36.

445453,

